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Introduction and Summary
This project is aim to look at parameter estimation for an inverse gamma model, which can be considered as a survival distribution. Also, we will show that computer simulation can be a very useful tool to characterize the performance of statistical estimators.
Analysis
The probability density function of inverse distribution is

where  is a shape parameter, is a scale parameter, and  is the gamma function. 
Let  be a random sample from an inverse gamma distribution with shape parameter  and unknown scale parameter .
Task 1
As  is i.i.d, the joint density function is
 (1.1)
Then 


Differentiating with respect to , we get the likelihood equation 

Differentiating again, we get

Which is negative for all , and any n.
Solving equation (1.3) for , we get

So  is the maximum likelihood estimator for .

The inverse gamma density’s three properties:
1) for,  , , , for, they all exist.
2) for ,  Where  are both integrable, and  satisfies  M is independent from 
3) for , .
Task 2
Let  denote the true value of , then the bias of  is 
.
Let , take  as a function of , and conduct Taylor expansions at , then 
  (2.1)
Where , summation (2.1) for 
Then we get

Where,




As  all are arithmetic mean of n iid variables. as , differentiating with  twice, then we have

Then,


For , according to Big Data Theorem, as 0<, and , we can find  that only relates with , when , the following inequalities hold.



Now, define the event

When , we have . As  the unique MLE, so when event B occurs,  so when , we have  for any small . Here we have proved that the bias vanishes as n .
Task 3
If  , then .

Let 

 So, we can use Gamma distribution to produce random sample of inverse Gamma distribution. Then we plot the mean square error of  with sample size n as shown in fig 1. We can see MSE deceases with the increase of n.
[image: ]
Fig-1 Mean square error and sample size

Task 4
Fisher information 
As shown in Task 2, we can know that 
Cramer-Rao lower bound on  is .
Task 5
Set , and we can calculate the relative Cramer-Rao lower bound on 
using R, we can find that MSE are always bigger than Cramer-Rao lower bound (shown in Fig2).
[image: ]
Fig 2 the difference between MSE and C-R bound
Task 6
Let  denote the as moment estimator. 
As

 ,   given 
So, , where 
Both maximum likelihood estimator (MLE) and Moment estimator (MME) are asymptotic unbiased and consistent. Compute MSE of these two estimators in R (shown in table1), we can find that moment estimator doesn’t produce better MSE result than maximum likelihood estimator (MLE).
	　
	MLE
	MME

	beta
	n=20
	n=40
	n=60
	n=20
	n=40
	n=60

	0.3
	0.0006
	0.0003
	0.0001
	0.0178
	0.0114
	0.0057

	0.5
	0.0012
	0.0006
	0.0005
	0.0869
	0.0242
	0.0198

	0.8
	0.0029
	0.002
	0.0009
	0.129
	0.0633
	0.0434

	1
	0.0058
	0.0022
	0.0014
	0.1472
	0.1014
	0.0732

	1.2
	0.0071
	0.0042
	0.0019
	0.3258
	0.1737
	0.0938


Table 1 MSE of MME and MLE
Task 7
As inverse gamma distribution satisfies properties shown in task1, and MLE  is the unique root, then we have

So, the approximate 95% confidence interval for  is 

The approximate error is shown in table 2.
	　
	MLE

	beta
	n=20
	n=40
	n=60

	0.3
	0.0203
	0.0151
	0.0108

	0.5
	0.0354
	0.0268
	0.0205

	0.8
	0.0645
	0.039
	0.0294

	1
	0.0675
	0.0582
	0.0376

	1.2
	0.0928
	0.0555
	0.0522


[bookmark: _GoBack]Table 2 approximate error: standard deviation of MLE

Appendix
Task 3’s R code
rm(list=ls(all=TRUE))
library('invgamma')

alpha<-10
beta<-1   #true value

ntime<-1000   #simulation runs
nmax<-50      #sample sizes
betahat<-rep(0,ntime)
vac<-rep(0,nmax)
MSE<-rep(0,nmax)

for (n in 1:nmax){
  # repeat times
  for (t in 1:ntime){
    Y<-rinvgamma(n,alpha,rate=1)
    betahat[t]<-alpha/mean(1/Y)
  }
  vac[n]<-var(betahat)
  MSE[n]<-1/ntime*sum(betahat-beta)^2
}

n<-c(1:50)
plot(n,MSE,main='MSE vs n')
Task 5’s R code
crbound<-beta^2/alpha/n^2
plot(MSE-crbound)
abline(h=0,col='red')
Task 6’s R code
betas<-c(0.3,0.5,0.8,1,1.2)
MSEMME<-matrix(0,nrow=5,ncol=3)
MSEMLE<-matrix(0,nrow=5,ncol=3)
ns<-c(20,40,60)

for (i in 1:5){
  beta<-betas[i]
  for (j in 1:3){
    n<-ns[j]
    mme<-rep(0,100)
    mle<-rep(0,100)
    for (t in 1:100){
      sp<- rinvgamma(n,alpha,beta)
      mme[t]<-mean(sp)*((mean(sp))^2/var(sp)+1)
      mle[t]<-alpha/mean(1/sp)
    }
    MSEMME[i,j]<-1/100*sum((mme-beta)^2)
    MSEMLE[i,j]<-1/100*sum((mle-beta)^2)
  }
}

round(MSEMME,4)
round(MSEMLE,4)
Task 7’s R code
betas<-c(0.3,0.5,0.8,1,1.2)
AVsMLE<-matrix(0,nrow=5,ncol=3)
ns<-c(20,40,60)

for (i in 1:5){
  beta<-betas[i]
  for (j in 1:3){
    n<-ns[j]
    mle<-rep(0,100)
    for (t in 1:100){
      sp<- rinvgamma(n,alpha,beta)
      mle[t]<-alpha/mean(1/sp)
    }
    AVsMLE[i,j]<-sd(mle)
  }
}

round(AVsMLE,4)
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